Part 3.1 Differentiation v2 2019-20

Definition
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Consider a “nice, smooth” function f, such as the one above, with a fixed
point P = (a, f(a)) . The slope, or gradient, of the chord from P to another
point @ = (z, f(x)) on the curve is given by

f(@) = f(a)

meQ = Tr —a

As @ gets “closer and closer” to P, the sequence of chords “seems” to be
getting “closer and closer” to a fixed straight line, the tangent of f at a. The
gradient of the tangent at a, if it exists, will be the derivative of f at a.

Definition 3.1.1 (Cauchy 1821) Let f : A — R and suppose that A contains
a neighbourhood of a. We say that f is differentiable at a if, and only if,

i L@ = (@)
r—a Tr — a
exists. The value of this limit is the derivative of f at a, and is denoted by

f'(a).

(Recall our conventions concerning limits; to say a limit exists is to assume
that it is finite.)

In the definition we could have written x = a + h, and noted that z — a
if, and only if, h — 0. Thus we also have
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A function is differentiable on an open interval if it is differentiable
at every point in that interval.

Where defined, f’(z) is a function of the variable x. If we set y = f(x)
then sometimes we write

dy dy - /
o) Oreven dx(x) , instead of f'(z),
and p p
d_z . or d—z(a) instead of f'(a).

Example 3.1.2 Using any results about limits that you feel appropriate show
that for n € N the function

fR=R, z+— 2"
15 differentiable for all x € R and find it’s derivative.

Solution Let n > 1 and a € R be given. Consider, for z # a,
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Polynomials are everywhere continuous so the value of the limit at a is
the value of the polynomial and so

lim M = na" L.
z—a T —qQ

Since the limit exists f is differentiable at a with derivative f’(a) = na™'.

Yet a and n were arbitrary and so, for all n > 1, f is everywhere differ-
entiable with f’(z) = na" L. |

Alternatively, consider
flath)—fla) 1
h h
and apply the Binomial Theorem.

((a+h)" —a")

Example 3.1.3 FEaxtend the above to show that for n € N the function
fRNA{0} =R, z— 2™
is differentiable for all x € RN\ {0}.



Solution left to students (and Tutorial). [

Example 3.1.4 Assume that e®? = e*e? for all a, 3 € R. Prove that
de®
de
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for all x € R.

Solution Let a € R be given. Consider, for x # a,

fla+h)— fla) e —er e —1
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The limit as h — 0 of the last factor was seen in an earlier section on

Special limits; giving

_ h _
lim flath) - fla) = ¢e% lim : = e°.
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Since the limit exists f is differentiable at a with derivative f’'(a) = e®.

Yet a were arbitrary and so f is everywhere differentiable with f’(x)

63{7

Example 3.1.5 Assume the addition formula for sine, namely
sin(a + ) = sinacos 5 + sin f cos «

for all a, B € R. Prove that

d .
—sinx = cosx
dx ’
for all x € R.
Solution Let a € R be given.
. sinx —sina . sin(h+a)—sina
lim ——— = lim
r—a xr—a h—0 h
. sinhcosa 4+ sinacosh — sina
= lim
h—0 h
. sin . . cosh—1
= cosalim — +sina lim ———
h—0 h h—0 h

by Sum Rule for Limits,

= cosa X 1+sina x 0,

by results from Part 1,

= cosa.



So the limit exists and thus sin « is differentiable at = a and it’s derivative
18

—sinx = cos a.

dx

Yet a € R was arbitrary, hence

d .
—sinx = cosx,

dx
for all x € R. [ |

See the Appendix for more discussion on this example and how, to avoid a
circular argument, we have to not use L’Hopital’s Rule to evaluate limy, o (sin k) /h.
To use L’Hopital’s Rule we need to be able to differentiate sinx. Yet to prove
we can differentiate sin z we need, as seen above, to use limy,_,q (sinh) /h = 1.

The following result is one you will have also seen in Complex Analysis.

Theorem 3.1.6 If a function is differentiable at a point then it is continuous
at that point.

Proof Assume f is differentiable at a € R. Consider

for x # a. Let x — a. Then, since f is differentiable at a we have

o ) = F(@)

r—a €T —a

= f'(a),

and, in particular, the limit exists. Also lim, ., (z — a) = 0.

Since both limits exist, we can use the Product Rule for Limits to say

lim (M (x — a)> = lim @) = /@) lim (z — a)

r—ra Tr— a r—a Tr — a T—ra
= f'(a) x 0=0.

Hence lim,_,, (f(z) — f(a)) = 0, i.e. lim,,, f(z) = f(a). Thus f is continu-
ous at a. u

The converse of this result is not true, i.e. f continuous at a does not
imply f is differentiable at a. To show this we need a counter-example.
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Example 3.1.7 Show that f : R — R, x + |z| is continuous but not differ-
entiable at x = 0.

Solution For the derivative at 0 consider, for x # 0,

fx) = f(0) ||

= — = signz.
z—0 T

This is known not to have a limit at 0 (the right hand limit is 1, the left
hand limit —1). Hence f is not differentiable at 0. [

Note The modulus function |z| can be written as

z ifax>0
2| = .
—x ifx <0.

Graphically:

Note In 1877 Weierstrass showed that there exist continuous functions that
are nowhere differentiable. See the web site for this course for details of such
functions.

Remember The Following:

Differentiable at a« = Continuous at a
Continuous at a =~ Differentiable at a




Rules for Differentiation

Since differentiation is defined using limits it can be no surprise that the
properties satisfied by derivative should bear a close resemblance to those
satisfied by limits. (See Section 1.3.)

Before the next result recall

Lemma 3.1.8 If f is continuous at a and f(a) # 0 then there exists § > 0
such that if |v — a| < § then f(z) is non-zero.

Theorem 3.1.9 Rules of Differentiation
Suppose that both f and g are differentiable at a. Then
Sum Rule: f + g is differentiable at a and

(f+9) (a) = f'(a) + ¢ (a),
Product Rule: fg is differentiable at a and
(f9)' (a) = f(a) g (a) + ['(a) g (a),
Quotient Rule: f/g is differentiable at a and

1Y 0 P g(@ = fa)g @
(g)() 90

provided that g (a) # 0.

Proof of the Sum Rule is left to Student.
Product Rule: Consider

(f9) (x) — (fg)(a) _ f(x)g(x) — fla)g(a)

@) = £(@) 9(@) + S (@) gla) ~ f(@) gla)
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Then

i JO @) =) @) e ) = ) 90— 0(a)

T—a r—a T—a T—a xr—a T—a T —a

by the Sum and Product Rules for limits. Allowable since all the limits on
the Right Hands Side (RHS) exist. Thus

i F9) (2) = (f9) ()

r—a Tr— Qa

= g(a) f'(a) + f(a) g'(a),

where lim,_,, g(x) = g (a) since g is differentiable and so, by Lemma 3.1.6,
continuous at a. Since the limit exists fg¢ is differentiable at a with

(f9) (@) = f(a) g’ (a) + ["(a) g (a).

Quotient Rule: We are told that ¢ is differentiable at a. This implies that
g is continuous at a, i.e. lim, ,, g(z) = g(a).

By Lemma 3.1.8 because g(a) # 0 there exists § > 0 such that for a —0 <
x < a+ ¢ we have g(z) # 0.

For such x consider

1 1 1 1
;(x)—g(a) _ @_m

Now let x — a to get

1 1

—(z) — —(a
e N G0
lim ¥———2— = - lim ,
e—a T —a g(a)lim, s, g(x) z>a  x—a

by the Quotient Rule for limits. This is allowable since all the limits on the
RHS exist along with lim, ., g(z) = g(a) # 0. Thus

z—a Tr—a g%(a) '



Since the limit exists 1/g is differentiable at a with

Finally,

(g)/(a) - (f é)/w) = f(a) G)/(a) + f'(a) ﬁ

by the Product Rule. The Quotient Result now follows. |

Note there is a common mistake made by far too many students attempting to
prove the Product Rule. See the Appendix for details.

Example 3.1.10 All polynomials are differentiable on R.
Solution is immediate. n

Theorem 3.1.11 Rational functions are differentiable wherever they are de-
fined.

Proof immediate. [ |



