
Part 3.1 Differentiation v2 2019-20

Definition
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Consider a “nice, smooth” function f , such as the one above, with a fixed
point P = (a, f(a)) . The slope, or gradient, of the chord from P to another
point Q = (x, f(x)) on the curve is given by

mPQ =
f(x)− f(a)

x− a
.

As Q gets “closer and closer” to P , the sequence of chords “seems” to be
getting “closer and closer” to a fixed straight line, the tangent of f at a. The
gradient of the tangent at a, if it exists, will be the derivative of f at a.

Definition 3.1.1 (Cauchy 1821) Let f : A → R and suppose that A contains
a neighbourhood of a. We say that f is differentiable at a if, and only if,

lim
x→a

f(x)− f(a)

x− a

exists. The value of this limit is the derivative of f at a, and is denoted by
f ′(a).

(Recall our conventions concerning limits; to say a limit exists is to assume
that it is finite.)

In the definition we could have written x = a+ h, and noted that x → a
if, and only if, h → 0. Thus we also have

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.
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A function is differentiable on an open interval if it is differentiable
at every point in that interval.

Where defined, f ′(x) is a function of the variable x. If we set y = f(x)
then sometimes we write

dy

dx
, or even

dy

dx
(x) , instead of f ′(x) ,

and
dy

dx

∣

∣

∣

∣

x=a

or
dy

dx
(a) instead of f ′(a) .

Example 3.1.2 Using any results about limits that you feel appropriate show
that for n ∈ N the function

f : R → R, x 7→ xn

is differentiable for all x ∈ R and find it’s derivative.

Solution Let n ≥ 1 and a ∈ R be given. Consider, for x 6= a,

f(x)− f(a)

x− a
=

xn − an

x− a
= xn−1 + axn−2 + a2xn−3 + · · ·+ an−2x+ an−1.

Polynomials are everywhere continuous so the value of the limit at a is
the value of the polynomial and so

lim
x→a

f(x)− f(a)

x− a
= nan−1.

Since the limit exists f is differentiable at a with derivative f ′(a) = nan−1.

Yet a and n were arbitrary and so, for all n ≥ 1, f is everywhere differ-
entiable with f ′(x) = nxn−1. �

Alternatively, consider

f(a+ h)− f(a)

h
=

1

h
((a+ h)n − an)

and apply the Binomial Theorem.

Example 3.1.3 Extend the above to show that for n ∈ N the function

f : R� {0} → R, x 7→ x−n

is differentiable for all x ∈ R� {0}.
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Solution left to students (and Tutorial). �

Example 3.1.4 Assume that eα+β = eαeβ for all α, β ∈ R. Prove that

dex

dx
= ex

for all x ∈ R.

Solution Let a ∈ R be given. Consider, for x 6= a,

f(a+ h)− f(a)

h
=

ea+h − ea

h
= ea

eh − 1

h
.

The limit as h → 0 of the last factor was seen in an earlier section on
Special limits; giving

lim
x→a

f(a+ h)− f(a)

h
= ea lim

x→a

eh − 1

h
= ea.

Since the limit exists f is differentiable at a with derivative f ′(a) = ea.

Yet a were arbitrary and so f is everywhere differentiable with f ′(x) =
ex. �

Example 3.1.5 Assume the addition formula for sine, namely

sin(α + β) = sinα cos β + sin β cosα

for all α, β ∈ R. Prove that

d

dx
sin x = cosx,

for all x ∈ R.

Solution Let a ∈ R be given.

lim
x→a

sin x− sin a

x− a
= lim

h→0

sin (h+ a)− sin a

h

= lim
h→0

sinh cos a+ sin a cosh− sin a

h

= cos a lim
h→0

sinh

h
+ sin a lim

h→0

cosh− 1

h

by Sum Rule for Limits,

= cos a× 1 + sin a× 0,

by results from Part 1,

= cos a.
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So the limit exists and thus sin x is differentiable at x = a and it’s derivative
is

d

dx
sin x

∣

∣

∣

∣

x=a

= cos a.

Yet a ∈ R was arbitrary, hence

d

dx
sin x = cosx,

for all x ∈ R. �

See the Appendix for more discussion on this example and how, to avoid a
circular argument, we have to not use L’Hôpital’s Rule to evaluate limh→0 (sinh) /h.
To use L’Hôpital’s Rule we need to be able to differentiate sin x. Yet to prove
we can differentiate sin x we need, as seen above, to use limh→0 (sinh) /h = 1.

The following result is one you will have also seen in Complex Analysis.

Theorem 3.1.6 If a function is differentiable at a point then it is continuous
at that point.

Proof Assume f is differentiable at a ∈ R. Consider

f(x)− f(a) =
f(x)− f(a)

x− a
(x− a) ,

for x 6= a. Let x → a. Then, since f is differentiable at a we have

lim
x→a

f(x)− f(a)

x− a
= f ′(a) ,

and, in particular, the limit exists. Also limx→a (x− a) = 0.

Since both limits exist, we can use the Product Rule for Limits to say

lim
x→a

(

f(x)− f(a)

x− a
(x− a)

)

= lim
x→a

f(x)− f(a)

x− a
lim
x→a

(x− a)

= f ′(a)× 0 = 0.

Hence limx→a (f(x)− f(a)) = 0, i.e. limx→a f(x) = f(a). Thus f is continu-
ous at a. �

The converse of this result is not true, i.e. f continuous at a does not
imply f is differentiable at a. To show this we need a counter-example.
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Example 3.1.7 Show that f : R → R, x 7→ |x| is continuous but not differ-
entiable at x = 0.

Solution For the derivative at 0 consider, for x 6= 0,

f (x)− f (0)

x− 0
=

|x|

x
= signx.

This is known not to have a limit at 0 (the right hand limit is 1, the left
hand limit −1). Hence f is not differentiable at 0. �

Note The modulus function |x| can be written as

|x| =

{

x if x ≥ 0

−x if x < 0.

Graphically:

x

y

Note In 1877 Weierstrass showed that there exist continuous functions that

are nowhere differentiable. See the web site for this course for details of such

functions.

Remember The Following:

Differentiable at a =⇒ Continuous at a

Continuous at a 6=⇒ Differentiable at a
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Rules for Differentiation

Since differentiation is defined using limits it can be no surprise that the
properties satisfied by derivative should bear a close resemblance to those
satisfied by limits. (See Section 1.3.)

Before the next result recall

Lemma 3.1.8 If f is continuous at a and f(a) 6= 0 then there exists δ > 0
such that if |x− a| < δ then f(x) is non-zero.

Theorem 3.1.9 Rules of Differentiation

Suppose that both f and g are differentiable at a. Then

Sum Rule: f + g is differentiable at a and

(f + g)′ (a) = f ′(a) + g′ (a) ,

Product Rule: fg is differentiable at a and

(fg)′ (a) = f(a) g′ (a) + f ′ (a) g (a) ,

Quotient Rule: f/g is differentiable at a and

(

f

g

)

′

(a) =
f ′(a) g (a)− f(a) g′ (a)

g (a)2

provided that g (a) 6= 0.

Proof of the Sum Rule is left to Student.

Product Rule: Consider

(fg) (x)− (fg) (a)

x− a
=

f(x) g(x)− f(a) g(a)

x− a

=
(f(x)− f(a)) g(x) + f(a) g(x)− f(a) g(a)

x− a

= g(x)
f(x)− f(a)

x− a
+ f(a)

g(x)− g(a)

x− a
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Then

lim
x→a

(fg) (x)− (fg) (a)

x− a
= lim

x→a
g(x) lim

x→a

f(x)− f(a)

x− a
+ f(a) lim

x→a

g(x)− g(a)

x− a
,

by the Sum and Product Rules for limits. Allowable since all the limits on
the Right Hands Side (RHS) exist. Thus

lim
x→a

(fg) (x)− (fg) (a)

x− a
= g(a) f ′(a) + f(a) g′(a) ,

where limx→a g(x) = g (a) since g is differentiable and so, by Lemma 3.1.6,
continuous at a. Since the limit exists fg is differentiable at a with

(fg)′ (a) = f(a) g′ (a) + f ′ (a) g (a) .

Quotient Rule: We are told that g is differentiable at a. This implies that
g is continuous at a, i.e. limx→a g(x) = g(a).

By Lemma 3.1.8 because g(a) 6= 0 there exists δ > 0 such that for a−δ <
x < a+ δ we have g(x) 6= 0.

For such x consider

1

g
(x)−

1

g
(a)

x− a
=

1

g(x)
−

1

g(a)

x− a

= −
1

g(x) g(a)

g(x)− g(a)

x− a
.

Now let x → a to get

lim
x→a

1

g
(x)−

1

g
(a)

x− a
= −

1

g(a)

1

limx→a g(x)
lim
x→a

g(x)− g(a)

x− a
,

by the Quotient Rule for limits. This is allowable since all the limits on the
RHS exist along with limx→a g(x) = g(a) 6= 0. Thus

lim
x→a

1

g
(x)−

1

g
(a)

x− a
= −

g′(a)

g2(a)
.
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Since the limit exists 1/g is differentiable at a with

(

1

g

)

′

(a) = −
g′(a)

g2(a)
.

Finally,

(

f

g

)

′

(a) =

(

f
1

g

)

′

(a) = f(a)

(

1

g

)

′

(a) + f ′(a)
1

g(a)

by the Product Rule. The Quotient Result now follows. �

Note there is a common mistake made by far too many students attempting to

prove the Product Rule. See the Appendix for details.

Example 3.1.10 All polynomials are differentiable on R.

Solution is immediate. �

Theorem 3.1.11 Rational functions are differentiable wherever they are de-
fined.

Proof immediate. �
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